Hancock, 1984). Within the cyclam moiety the fivemembered rings are gauche whereas the sixmembered rings are in a slightly flattened chair conformation. This complex is thus essentially isostructural with the Co analogue. The $\mathrm{Zn}-\mathrm{O}$ bond length of 2.380 (2) \AA compares with $\mathrm{Co}-\mathrm{O}$ of 2.409 (3) \AA, but the $\mathrm{Zn}-\mathrm{N}$ bonds of 2.086 and 2.090 (2) \AA are considerably longer than the $\mathrm{Co}-\mathrm{N}$ bonds of 1.982 and 1.978 (4) \AA. The cyclam macrocycle accommodates this difference by alteration of the bond angles, principally those at the nitrogen atoms.

Bond distances and angles are given in Table 2 and a stereoplot in Fig. 2.

Funds for the X-ray facilities used for this research were provided by the National Science Foundation, grant No. CHE-8717071, and the research was supported by NSF grant CHE-8817702. TAT acknowledges support from Achievement Rewards for College Scientists Foundation, Inc.

References

Addison, A. W. \& Sinn, E. (1983). Inorg. Chem. 22, 1225-1228.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Endicott, J. F., Lllie, J., Kusza, J. M., Ramaswamy, B. S., Schmonsees, W. G., Simic, M. G., Glick, M. D. \& Rillema, D. P. (1977). J. Am. Chem. Soc. 99, 429-439.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Ito, T., Ito, H. \& Toriumi, K. (1981). Chem. Lett. pp. 1101-1104.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Prasad, L., Nyburg, S. C. \& McAuley, A. (1987). Acta Cryst. C43, 1038-1042.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ, of Cambridge, England.
Tasker, P. A. \& Sklar, L. (1975). J. Cryst. Mol. Struct. 5, 329-344.
Thöm, V. J., Fox, C. C., Boeyens, J. C. A. \& Hancock, R. D. (1984). J. Am. Chem. Soc. 106, 5947-5955.

Toriumi, K., Yamashita, M., Ito, H. \& Ito, T. (1986). Acta Cryst. C42, 963-968.

Acta Cryst. (1990). C46, 1640-1642

Structure of Sodium (Trimethylenediaminetetraacetato)ferrate(III) Trihydrate

By Ken-ichi Okamoto,* Kan Kanamori \dagger and Jinsal Hidaka
Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

(Received 19 October 1989; accepted 2 January 1990)

Abstract

Na}\left[\mathrm{Fe}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=435 \cdot 12\), orthorhombic, $\quad P 2_{1} 2_{1} 2_{2}, \quad a=11.486(4), \quad b=$ 16.664 (7), $c=8.867$ (3) $\AA, V=1697$ (1) $\AA^{3}, Z=4$, $D_{x}=1.703 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \mu=$ $9.05 \mathrm{~cm}^{-1}, \quad F(000)=900$, room temperature, $R=$ 0.0416 for 2686 independent reflections $\left[\left|F_{o}\right|>\right.$ $\left.3 \sigma\left(\left|F_{o}\right|\right)\right]$. The Fe atom is surrounded octahedrally by four O and two N atoms of the title ligand (tdta). This complex anion has been spontaneously resolved by crystallization to take the Λ configuration in the crystal used for the analysis.

Introduction. In the course of investigations into the Raman spectra of iron(III) complexes with trimethylenediaminetetraacetate (tdta), we have found that the lithium salt of the $\mathrm{Fe}^{\mathrm{III}}$ complex with tdta has two different crystalline forms. One of them has been identified as $\mathrm{Li}[\mathrm{Fe}(\mathrm{tdta})] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, which has an octahedral six-coordinate structure (Yamamoto, Mikata,

^[* To whom correspondence should be addressed. \dagger Department of Chemistry, Faculty of Science, Toyama University, Gofuku 3190, Toyama 930, Japan.]

0108-2701/90/091640-03\$03.00

Miyoshi \& Yoneda, 1988). In contrast to the Li salt, the sodium salt of the $\mathrm{Fe}^{\text {III }}$ complex with tdta has been obtained only as a stable yellow crystalline form. In order to establish the geometry adopted by the sodium salt and to find out the origin of the stability in the crystalline state, we have determined its structure and report it here.

Experimental. The title complex was prepared as follows: a solution containing 5.76 g of the barium salt of tdta, prepared by the method of Weyh \& Hamm (1968), 4.72 g of iron(III) sulfate, and 1.42 g of sodium sulfate in $50 \mathrm{~cm}^{3}$ of water were stirred at room temperature for 2 h . After removing the precipitate, the filtrate was concentrated to $10-20 \mathrm{~cm}^{3}$. The crystals were obtained from the solution by evaporation at room temperature.
Yellow crystal, $0.50 \times 0.50 \times 0.40 \mathrm{~mm}$; EnrafNonius CAD-4 diffractometer, 50 kV and 26 mA ; unit-cell dimensions by least-squares refinement from 25 reflections with $20<2 \theta<24^{\circ} ; \omega-2 \theta$ scan, scan rate $4 \cdot 12-16.48^{\circ} \mathrm{min}^{-1}$, scan width $(1.0+0.35 \tan \theta)^{\circ}$; (c) 1990 International Union of Crystallography

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for the non- H atoms

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Fe	$0 \cdot 35994$ (3)	$0 \cdot 24529$ (2)	0.76461 (4)	$1 \cdot 44$ (2)
$\mathrm{O}(1)$	0.4009 (2)	$0 \cdot 1680$ (1)	0.9243 (3)	2.27 (8)
$\mathrm{O}(2)$	0.4681 (3)	$0 \cdot 1524$ (2)	$1 \cdot 1584$ (3)	$2 \cdot 88$ (10)
$\mathrm{O}(3)$	$0 \cdot 2456$ (2)	$0 \cdot 3053$ (1)	$0 \cdot 8835$ (3)	$2 \cdot 10$ (8)
$\mathrm{O}(4)$	$0 \cdot 2118$ (2)	$0 \cdot 4195$ (2)	1.0059 (3)	$2 \cdot 68$ (9)
$\mathrm{O}(5)$	0.2702 (2)	$0 \cdot 1619$ (1)	0.6560 (3)	2.31 (8)
O (6)	0.2829 (3)	0.0633 (2)	0.4926 (4)	4.96 (17)
$\mathrm{O}(7)$	0.3486 (2)	$0 \cdot 3264$ (1)	0.6019 (3)	$2 \cdot 24$ (8)
$\mathrm{O}(8)$	0.4065 (3)	$0 \cdot 3683$ (2)	0.3758 (3)	$3 \cdot 10$ (10)
N(1)	0.4761 (2)	$0 \cdot 3205$ (1)	$0 \cdot 8966$ (3)	1.55 (7)
$\mathrm{N}(2)$	0.4999 (2)	$0 \cdot 2039$ (2)	0.6183 (3)	1.81 (8)
C(1)	0.4984 (3)	$0 \cdot 2792$ (2)	1.0408 (4)	2.04 (10)
C(2)	0.4531 (3)	$0 \cdot 1929$ (2)	1.0455 (3)	1.90 (9)
C(3)	0.4067 (3)	$0 \cdot 3942$ (2)	0.9211 (4)	1.95 (10)
C(4)	$0 \cdot 2785$ (3)	$0 \cdot 3729$ (2)	0.9410 (3)	1.91 (10)
C(5)	$0 \cdot 4601$ (3)	$0 \cdot 1206$ (2)	0.5773 (5)	$2 \cdot 55$ (12)
C(6)	0.3279 (3)	$0 \cdot 1148$ (2)	$0 \cdot 5703$ (4)	2.41 (12)
C(7)	$0 \cdot 5057$ (3)	0.2564 (2)	$0 \cdot 4862$ (4)	$2 \cdot 37$ (11)
C(8)	0.4133 (3)	$0 \cdot 3229$ (2)	$0 \cdot 4855$ (3)	1.92 (9)
C(9)	0.5841 (3)	$0 \cdot 3428$ (2)	0.8138 (4)	$2 \cdot 50$ (11)
$\mathrm{C}(10)$	0.6638 (3)	0.2745 (3)	0.7627 (5)	2.93 (13)
C(11)	0.6123 (3)	$0 \cdot 1964$ (2)	0.7009 (4)	2.58 (11)
Na	0.0564 (1)	0.4857 (1)	0.8496 (2)	2.53 (5)
$\mathrm{O}(11)$	-0.0640 (3)	0.4993 (2)	1.0733 (4)	3.24 (11)
$\mathrm{O}(12)$	-0.0941 (3)	$0 \cdot 5410$ (2)	0.6970 (3)	$3 \cdot 25$ (10)
$\mathrm{O}(13)$	0.1834 (3)	$0 \cdot 4539$ (2)	$0 \cdot 6518$ (3)	$3 \cdot 30$ (11)

three intensity standards monitored every 2 h of X-ray exposure time; orientation (for the same three reflections) monitored after every 200 scans; 2821 unique reflections, $2 \theta \leq 60^{\circ}(0 \leq h \leq 16,0 \leq k \leq 23$, $0 \leq l \leq 12) ; 2686$ reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$ used for structure determination; intensities corrected for Lorentz and polarization, not for absorption. The Fe -, three O - and N -atom positions determined by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) and successive difference Fourier maps. All the H atoms were fixed by geometrical constraints ($\mathrm{C}-\mathrm{H}=0.97 \AA$) and isotropic thermal parameters ($U=0.05 \AA^{2}$). The water hydrogens were not included in the calculation. The structure was refined on F by full-matrix least squares using anisotropic thermal parameters for non-H atoms; for atomic parameters containing the Λ configuration of the complex anion, $R=0.0416$ and $w R=0.0488, w=$ $1 /\left[\sigma^{2}\left(F_{o}\right)+0.009789\left|F_{o}\right|^{2}\right], S=0.703$, and for those containing the Δ configuration $R=0.0543$ and $w R=$ $0.0652, \quad w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.010141\left|F_{o}\right|^{2}\right), \quad S=0.873$; $|\Delta \rho|_{\text {max }}$ in the final difference Fourier map $=$ $0.66 \mathrm{e} \AA^{-3}$. $(\Delta / \sigma)_{\max }=0.005$. The enantiomeric structure could be rejected at the 0.005 significance level by the Hamilton (1965) test ($R_{1,2409,0 \cdot 005}=$ 1.002). All calculations were performed with SHELX76 (Sheldrick, 1976) and molecular illustrations were drawn using ORTEP (Johnson, 1976) on a FACOM M-780/20 computer. Scattering factors were taken from International Tables for X-ray Crystallography (1974).

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Fe}-\mathrm{O}(1)$	1.971 (2)	$\mathrm{O}(8)-\mathrm{C}(8)$	$1 \cdot 236$ (4)
$\mathrm{Fe}-\mathrm{O}(3)$	1.959 (2)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.475 (4)
$\mathrm{Fe}-\mathrm{O}(5)$	1.980 (2)	$\mathrm{N}(1)-\mathrm{C}(3)$	1.479 (4)
$\mathrm{Fe}-\mathrm{O}(7)$	1.981 (2)	$\mathrm{N}(1)-\mathrm{C}(9)$	1.488 (4)
$\mathrm{Fe}-\mathrm{N}(1)$	2.173 (2)	$\mathrm{N}(2)-\mathrm{C}(5)$	1.507 (4)
$\mathrm{Fe}-\mathrm{N}(2)$	$2 \cdot 177$ (2)	$\mathrm{N}(2)-\mathrm{C}(7)$	1.464 (4)
$\mathrm{O}(1)-\mathrm{C}(2)$	$1 \cdot 298$ (4)	$\mathrm{N}(2)-\mathrm{C}(11)$	1.490 (4)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.219 (4)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.531 (4)
$\mathrm{O}(3)-\mathrm{C}(4)$	1.292 (4)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.525 (4)
$\mathrm{O}(4)-\mathrm{C}(4)$	1.233 (4)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.523 (5)
$\mathrm{O}(5)-\mathrm{C}(6)$	$1 \cdot 277$ (4)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.534 (4)
$\mathrm{O}(6)-\mathrm{C}(6)$	1.217 (4)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.529 (5)
$\mathrm{O}(7)-\mathrm{C}(8)$	1.273 (4)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.530 (5)
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(3)$	96.2 (1)	$\mathrm{Fe}-\mathrm{N}(2)-\mathrm{C}(5)$	$102 \cdot 2$ (2)
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(5)$	90.9 (1)	$\mathrm{Fe}-\mathrm{N}(2)-\mathrm{C}(7)$	108.8 (2)
$\mathrm{O}(3)-\mathrm{Fe}-\mathrm{O}(5)$	$105 \cdot 8$ (1)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(7)$	111.8 (3)
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(7)$	169.9 (1)	$\mathrm{Fe}-\mathrm{N}(2)-\mathrm{C}(11)$	111.9 (2)
$\mathrm{O}(3)-\mathrm{Fe}-\mathrm{O}(7)$	$90 \cdot 0$ (1)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(11)$	107.7 (3)
$\mathrm{O}(5)-\mathrm{Fe}-\mathrm{O}(7)$	95.2 (1)	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)$	113.8 (3)
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{N}(1)$	81.0 (1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.8 (2)
$\mathrm{O}(3)-\mathrm{Fe}-\mathrm{N}(1)$	$80 \cdot 1$ (1)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	124.6 (3)
$\mathrm{O}(5)-\mathrm{Fe}-\mathrm{N}(1)$	$170 \cdot 6$ (1)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$115 \cdot 7$ (3)
$\mathrm{O}(7)-\mathrm{Fe}-\mathrm{N}(1)$	92.2 (1)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	119.6 (3)
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{N}(2)$	92.6 (1)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$110 \cdot 2$ (2)
$\mathrm{O}(3)-\mathrm{Fe}-\mathrm{N}(2)$	167.7 (1)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	123.4 (3)
$\mathrm{O}(5)-\mathrm{Fe}-\mathrm{N}(2)$	82.7 (1)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	116.0 (3)
$\mathrm{O}(7)-\mathrm{Fe}-\mathrm{N}(2)$	80.3 (1)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	120.5 (3)
$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(2)$	92.9 (1)	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	111.7 (3)
$\mathrm{Fe}-\mathrm{O}(1)-\mathrm{C}(2)$	119.8 (2)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	123.4 (3)
$\mathrm{Fe}-\mathrm{O}(3)-\mathrm{C}(4)$	117.5 (2)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{C}(5)$	117.0 (3)
$\mathrm{Fe}-\mathrm{O}(5)-\mathrm{C}(6)$	116.8 (2)	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	119.4 (3)
$\mathrm{Fe}-\mathrm{O}(7)-\mathrm{C}(8)$	121.4 (2)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	113.7 (2)
$\mathrm{Fe}-\mathrm{N}(1)-\mathrm{C}(1)$	107.7 (2)	$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{O}(8)$	$125 \cdot 0$ (3)
$\mathrm{Fe}-\mathrm{N}(1)-\mathrm{C}(3)$	$103 \cdot 1$ (2)	$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(7)$	$115 \cdot 7$ (3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	110.7 (2)	$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{C}(7)$	119.3 (3)
$\mathrm{Fe}-\mathrm{N}(1)-\mathrm{C}(9)$	113.0 (2)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	117.3 (3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)$	$113 \cdot 5$ (2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.5 (3)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(9)$	108.4 (2)	$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	116.1(3)

The optical activity of the complex was checked in an aqueous solution with a JASCO J-600 spectropolarimeter.

Discussion. The final atomic parameters are listed in Table 1.* The molecular structure and numbering scheme are illustrated in the ORTEP plot given in Fig. 1. Bond distances and angles are listed in Table 2.

The coordination geometry around the $\mathrm{Fe}^{\mathrm{III}}$ atom is approximately octahedral. The tdta ligand acts as a hexadentate ligand. For this complex, therefore, two optical isomers, Δ and Λ, are possible. The single crystal used in the present work was spontaneously resolved by the crystallization and the absolute configuration of the complex anion is estimated from the residual values to be the Λ configuration, although its optical activity could not be observed in aqueous

[^1]

Fig. 1. ORTEP (Johnson, 1976) drawing of the $[\mathrm{Fe}(\mathrm{tdta})]^{-}$anion (50% probability thermal eilipsoids) with the atom-numbering scheme. H atoms are omitted for clarity.
solution because of rapid racemization or rearrangement. The trimethylenediamine moiety takes a symmetric skew-boat form with δ conformation. This differs from $\mathrm{Li}[\mathrm{Fe}(\mathrm{tdta})]$ (Li salt) and other metal-tdta complexes, which have a twist-boat conformation (Yamamoto, Mikata, Miyoshi \& Yoneda, 1988, and references therein).

The $\mathrm{Fe}-\mathrm{N}$ [av. $2 \cdot 175(2) \AA$] and $\mathrm{Fe}-\mathrm{O}$ [av. 1.973 (2) \AA] distances in the present complex (Na salt) are shorter than those of the Li salt [2.194 (3) and 1.989 (3) \AA, respectively]. The deviations of the bond angles around the $\mathrm{Fe}^{\mathrm{III}}$ atom from 90 and 180° in the Na salt are smaller than those in the Li salt,
e.g. $\mathrm{O}(3)-\mathrm{Fe}-\mathrm{O}(5), 105 \cdot 8(1)^{\circ}\left[112.5(1)^{\circ}\right.$ in the Li salt]; $\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(2), 92 \cdot 9$ (1) ${ }^{\circ}$ [94.3 (1) ${ }^{\circ}$]; in-plane, $\mathrm{O}-\mathrm{Fe}-\mathrm{N}, 80 \cdot 1$ (1) and $82.7(1)^{\circ}$ [77.8 (1) and $\left.78.8(1)^{\circ}\right]$, and so on. This fact seems to indicate that in the Na salt the molecular geometry of the $\mathrm{Fe}^{\mathrm{III}}$ complex has less steric hindrance in the solid in comparison with the Li salt.
The Na atom is surrounded octahedrally by three O atoms of the tdta moiety $\left[\mathrm{O}(2)\left(-\frac{1}{2}+x, \frac{1}{2}-y, 2-\right.\right.$ $z), \mathrm{O}(4)$ and $\left.\mathrm{O}(8)\left(\frac{1}{2}-x, 1-y, \frac{1}{2}+z\right)\right]$ and three water O atoms. The $\mathrm{Na}-\mathrm{O}$ distances are in the range $2 \cdot 343(3)-2 \cdot 515(3) \AA$. Hydrogen bonds also exist between the water molecules and the O atoms in the tdta moiety, $\mathbf{O}(1) \cdots \mathbf{O}(11) \quad[2 \cdot 817(4) \AA]$, $\mathrm{O}(6) \cdots \mathrm{O}(11) \quad[2 \cdot 792(4) \AA]$ and $\mathrm{O}(7) \cdots \mathrm{O}(13)$ [2.882 (4) Á].

References

Hamilon, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Weyh, J. A. \& Hamm, R. E. (1968). Inorg. Chem. 7, 2431-2435.
Yamamoto, T., Mikata, K., Miyoshi, K. \& Yoneda, H. (1988). Inorg. Chim. Acta, 150, 237-244.

Structure of
 [2,6-Bis(2-benzimidazolyl)pyridine]dichlorocopper(II) Dimethylformamide

By Gérald Bernardinelli
Laboratory of X-ray Crystallography, University of Geneva, 24 quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
and Gerard Hopfgartner and Alan F. Williams
Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland

(Received 30 September 1989; accepted 21 December 1989)

Abstract

CuCl}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}\right)\right] . \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, \quad M_{r}=518 \cdot 9\), monoclinic, $P 2_{1} / n, a=9 \cdot 150$ (1), $b=12 \cdot 908$ (3), $c=$ 18.964 (4) $\AA, \beta=93.33(1)^{\circ}, V=2236.0$ (7) $\AA^{3}, Z=$ $4, D_{m}=1.54$ (2), $D_{x}=1.54 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=$ $0.71069 \AA, \quad \mu=1.25 \mathrm{~mm}^{-1}, \quad F(000)=1060$, room 0108-2701/90/091642-04\$03.00

temperature, $R=0.069$ for 1918 reflections. The structure shows $\mathrm{Cu}^{\mathrm{II}}$ in a square-pyramidal environment with the planar tridentate ligand and one chloride in the equatorial plane, and the second chloride more weakly bound (as shown by the (c) 1990 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, and bond distances and angles around the sodium ion have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52915 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

